miércoles, 14 de abril de 2010

CALCULO

INTEGRALES

INRODUCCION
La integración es el proceso inverso a la derivación. Esto quiere decir:
Sea y = f(x) una función. Sea y' = g(x) la derivada de y = f(x). Si calculamos la integral de la función g(x), obtendremos como resultado f(x).
Sin embargo, esta definición de integral es poco 'enrrollada' (esto quiere decir que nos hemos quedado como estábamos). Se comprende mejor el concepto de integral sabiendo que surgió (fue descubierto por Leibnitz y Newton) para resolver problemas de medidas (medir longitudes de curvas, superficies, volúmenes).
La integración es una suma (el signo de integral surgió como deformación del signo sumatorio).
Supongamos que nos piden que calculemos la superficie limitada entre la curva de ecuación y = f(x), el eje x y las rectas x = 3 y x = 5. Si descomponemos esa superficie en rectángulos de base en el eje x y altura y, podemos aproximar el área por la suma de las áreas de los rectángulos. Si hacemos los rectángulos muy estrechos (de anchura dx) el área sería la suma de las áreas de esos rectángulos, o sea f(x).dx (dx sería la base y f(x) es la altura del rectángulo en el punto x).
Dice mi padre que derivar es fácil pero aburrido y que integrar es difícil pero divertido.
Métodos de integración
En el apartado siguiente podeis encontrar un montón de fórmulas de integración. Es probable que la integral que tengas que resolver esté en una de esas fórmulas, pero si utilizas las fórmulas no aprenderás a integrar.
Sólo debes saber las integrales mas elementales (las que se derivan directamente de las fórmulas de las derivadas equivalentes), las demás se obtienen aplicando métodos muy variados.
No hay otra forma de aprender las integrales que haciendo muchas (mi padre dice que hay que hacer más de mil) . Es imprescindible un buen libro de cálculo (mejor varios).
Método de cambio de variable: Es el método más frecuente. Consiste en hacer una expresión (elegirla es lo difícil) igual a una nueva variable (por ejemplo t), calcular la derivada de esta nueva variable y sustituir estos datos en la expresión que queremos integrar. En muchas ocasiones la integral que se obtiene es más sencilla que la original y asi podemos integrarla.
Evidentemente despues tenemos que deshacer el cambio de variable.
Trucos para elegir el cambio de variable:
Observa la expresión que tienes que integrar con detenimiento. Este es el mejor consejo.
Si ves que la expresión se puede descomponer en dos partes y una de ellas es la derivada de la otra, iguala esta última expresión a t, a continuación deriva esta expresión y sustituyes todo en la integral.
Si la expresión a integrar tiene una raiz cuadrada con dos términos (si son cuadrados perfectos es probable que sea el método más adecuado) sumados, dibuja un triángulo rectángulo y pon la raíz en la hipotenusa y en los catetos la raiz cuadrada de cada uno de los sumandos. A continuación llama t a uno de los ángulos agudos del triángulo y utiliza las relaciones trigonométricas (seno, coseno y tangente) para hacer las sustituciones.
Si la expresión a integrar tiene una raiz cuadrada con dos términos (si son cuadrados perfectos es probable que sea el método más adecuado) restados, dibuja un triángulo rectángulo y pon la raíz cuadrada del término positivo en la hipotenusa y en los catetos la raiz cuadrada de cada uno de los sumandos. A continuación llama t a uno de los ángulos agudos del triángulo y utiliza las relaciones trigonométricas (seno, coseno y tangente) para hacer las sustituciones.
haga clic

LA INTEGRAL DEFINIDA
Cuando estudiamos el problema del área y el problema de la distancia analizamos que tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto se puede calcular aproximadamente por medio de sumas o bien exactamente como el límite de una suma.
[f(x0) + f(x1) + f(x2) + ……………………… + f(xn–1)] D x =
(se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)
[f(x1) + f(x2) + f(x3) + ……………………… + f(xn)] D x =
(se utiliza el valor de la función en el extremo derecho de cada subintervalo)
[f(t1) + f(t2) + f(t3) + ……………………… + f(tn)] D x =
(se utiliza el valor de la función en cualquier punto de cada subintervalo)
Este tipo de límites aparece en una gran variedad de situaciones incluso cuando f no es necesariamente una función positiva. Teniendo en cuenta lo expresado surge la necesidad de dar un nombre y una notación a este tipo de límites.
Definición 1: Si f es una función continua sobre el intervalo [a, b], entonces la integral definida de f de a a b, que se indica es el número:
= [f(x0) + f(x1) + f(x2) + ……………………… + f(xn–1)] D x o bien
= donde x0 = a, xn = b y D x = .
(la función se evalúa en el extremo izquierdo de cada subintervalo [xi-1, xi] con i = 1, .., n)
Definición 2: Si f es una función continua sobre el intervalo [a, b], entonces la integral definida de f de a a b, que se indica es el número:
= [f(x1) + f(x2) + f(x3) + ……………………… + f(xn)] D x
= donde x0 = a, xn = b y D x = .
(la función se evalúa en el extremo derecho de cada subintervalo [xi-1, xi] con i = 1, .., n)
Definición 3: Si f es una función continua sobre el intervalo [a, b], entonces la integral definida de f de a a b, que se indica es el número:
= [f(t1) + f(t2) + f(t3) + ……………………… + f(tn)] D x
= donde x0 = a, xn = b y D x = .
(la función se evalúa en cualquier punto ti de cada subintervalo [xi-1, xi] con i = 1, .., n)
El número a es el límite inferior de integración y el número b es el límite superior de integración .
Notación y terminología:
Cuando se calcula el valor de la integral definida se dice que se e valúa la integral.
La continuidad asegura que los límites en las tres definiciones existen y dan el mismo valor por eso podemos asegurar que el valor de es el mismo independientemente de cómo elijamos los valores de x para evaluar la función (extremo derecho, extremo izquierdo o cualquier punto en cada subintervalo). Enunciamos entonces una definición más general.
Definición de integral definida: Sea f una función continua definida para a £ x £ b. Dividimos el intervalo [a, b] en n subintervalos de igual ancho D x = . Sean x0 = a y xn = b y además x0, x1, ...., xn los puntos extremos de cada subintervalo. Elegimos un punto ti en estos subintervalos de modo tal que ti se encuentra en el i-ésimo subintervalo [xi-1, xi] con i = 1, .., n.
Entonces la integral definida de f de a a b es el número = .
La integral definida es un número que no depende de x. Se puede utilizar cualquier letra en lugar de x sin que cambie el valor de la integral.
Aunque esta definición básicamente tiene su motivación en el problema de cálculo de áreas, se aplica para muchas otras situaciones. La definición de la integral definida es válida aún cuando f(x) tome valores negativos (es decir cuando la gráfica se encuentre debajo del eje x). Sin embargo, en este caso el número resultante no es el área entre la gráfica y el eje x.
Observación: La suma que aparece en la definición de integral definida se llama suma de Riemann en honor al matemático alemán Bernahrd Riemann. Su definición incluía además subintervalos de distinta longitud.
Definición de las sumas de Riemann: Sea f una función definida en el intervalo cerrado [a, b] y sea una división (partición) arbitraria de dicho intervalo a = x0 £ x1 £ x2 £ x3 £ ......... £ xn-1 £ xn = b donde D xi indica la amplitud o longitud del i-ésimo subintervalo. Si ti es cualquier punto del i-ésimo subintervalo la suma , xi-1 £ ti £ xi se llama suma de Riemann de f asociada a la partición .
Si bien la integral definida había sido definida y usada con mucha anterioridad a la época de Riemann él generalizó el concepto para poder incluir una clase de funciones más amplia. En la definición de una suma de Riemann, la única restricción sobre la función f es que esté definida en el intervalo [a, b]. (antes suponíamos que f era no negativa debido a que estábamos tratando con el área bajo una curva).
Ejemplo: Halle

Como f(x) = x3 es continua en el intervalo [-2, 1] sabemos que es integrable.
Dividimos el intervalo en n subintervalos de igual longitud y para el cálculo de la integral consideramos el extremo derecho de cada subintervalo ti = .
= = =
Para el desarrollo de la sumatoria tenemos en cuenta las propiedades siguientes:

=
=
= = =
=
Observación: Esta integral definida es negativa, no representa el área graficada. Las integrales definidas pueden ser positivas, negativas o nulas.
Surgimiento del símbolo
Leibniz creó el símbolo en la última parte del siglo XVII. La es una S alargada de summa (palabra latina para suma). En sus primeros escritos usó la notación "omn." (abreviatura de la palabra en latín "omnis") para denotar la integración. Después, el 29 de octubre de 1675, escribió, "será conveniente escribir en vez de omn., así como en vez de omn.l ...". Dos o tres semanas después mejoró aún más la notación y escribió en vez de solamente. Esta notación es tan útil y significativa que su desarrollo por Leibniz debe considerarse como una piedra angular en la historia de la matemática y la ciencia.
La notación de la integral definida ayuda a tener en cuenta el significado de la misma. El símbolo hace referencia al hecho de que una integral es un límite de una suma de términos de la forma "f(x) por una pequeña diferencia de x". La expresión dx no se considera por separado sino que forma parte de la notación que significa "la integral de una determinada función con respecto a x". Esto asegura que dx no tiene significado por si mismo sino que forma parte de la expresión completa . De todos modos, desde un punto de vista totalmente informal e intuitivo algunos consideran que la expresión dx indica "una porción infinitesimalmente pequeña de x" que se multiplica por un valor de la función. Muchas veces esta interpretación ayuda a entender el significado de la integral definida. Por ejemplo, si v(t) (positiva) es la velocidad de un objeto en el instante t entonces v(t) dt se podría interpretar, según la consideración hecha, como velocidad . tiempo y esto sabemos que da por resultado la distancia recorrida por el objeto durante un instante, una porción de tiempo muy pequeña dt. La integral se puede considerar como la suma de todas esas distancias pequeñas que como ya analizamos da como resultado el cambio neto en la posición del objeto o la distancia total recorrida desde t = a hasta t = b.
Esta notación permite además determinar qué unidades se deben usar para su valor. Como sabemos los términos que se suman son productos de la forma "f(x) por un valor muy pequeño de x". De esta manera la unidad de medida de es el producto de las unidades de f(x) por las unidades de x. Por ejemplo:
* si v(t) representa la velocidad medida en y t es el tiempo medido en horas, entonces la tiene por unidades . h = km. La unidad obtenida es kilómetros y es lo que corresponde porque es valor de la integral representa un cambio de posición.
* si se grafica y = f(x) con las mismas unidades de medida de longitud a lo largo de los ejes coordenados, por ejemplo metros, entonces f(x) y x se miden en metros y
tiene por unidad m . m = m2. Esta unidad es la esperada dado que, en este caso la integral representa un área.
Es importante tener en cuenta el teorema enunciado a continuación.
Teorema:
Si una función f es continua en un intervalo [a, b] entonces f es integrable en ese intervalo .
Si f tiene un número finito de discontinuidades en [a, b] pero se mantiene acotada para todo x del intervalo (presenta sólo discontinuidades evitables o de salto finito) entonces es integrable en el intervalo.
haga clic

Integral indefinida


El campo vectorial definido asignando a cada punto (x, y) un vector que tiene por pendiente ƒ(x) = (x3/3)-(x2/2)-x. Se muestran tres de las infinitas primitivas de ƒ(x) que se pueden obtener variando la constante de integración C.
En cálculo infinitesimal, la función primitiva o antiderivada de una función f es una función F cuya derivada es f, es decir, F ′ = f.
Una condición suficiente para que una función f admita primitivas sobre un intervalo es que sea continua en dicho intervalo.
Si una función f admite una primitiva sobre un intervalo, admite una infinidad, que difieren entre sí en una constante: si F1 y F2 son dos primitivas de f, entonces existe un número real C, tal que F1 = F2 + C. A C se le conoce como constante de integración. Como consecuencia, si F es una primitiva de una función f, el conjunto de sus primitivas es F + C. A dicho conjunto se le llama integral indefinida de f y se representa como:
ó
El proceso de hallar la primitiva de una función se conoce como integración indefinida y es por tanto el inverso de la derivación. Las integrales indefinidas están relacionadas con las integrales definidas a través del teorema fundamental del cálculo integral, y proporcionan un método sencillo de calcular integrales definidas de numerosas funciones.
La integral indefinida o primitiva de la función f(x) = cos(x) en es la función F(x) = sen(x) ya que sen′(x) = cos(x). Dado que la derivada de una constante es cero, tendremos que cos(x) tendrá un número infinito de primitivas tales como sen(x), sen(x) + 5, sen(x) - 100, etc. Es más, cualquier primitiva de la función f(x) = cos(x) será de la forma sen(x) + C donde C es una constante.
Constante de integración
La derivada de cualquier función constante es cero. Una vez que se ha encontrado una primitiva F, si se le suma o resta una constante C, se obtiene otra primitiva. Esto ocurre porque (F + C) ' = F ' + C ' = F ' + 0 = F '. La constante es una manera de expresar que cada función tiene un número infinito de primitivas diferentes.
Para interpretar el significado de la constante de integración se puede observar el hecho de que la función f (x) sea la derivada de otra función F (x) quiere decir que para cada valor de x, f (x) le asigna la pendiente de F (x). Si se dibuja en cada punto (x, y) del plano cartesiano un pequeño segmento con pendiente f (x), se obtiene un campo vectorial como el que se representa en la figura de la derecha. Entonces el problema de encontrar una función F (x) tal que su derivada sea la función f (x) se convierte en el problema de encontrar una función de la gráfica de la cual, en todos los puntos sea tangente a los vectores del campo. En la figura de la derecha se observa como al variar la constante de integración se obtienen diversas funciones que cumplen esta condición y son traslaciones verticales unas de otras.
Otras propiedades
Linealidad de la integral indefinida
La primitiva es lineal, es decir:
Si f es una función que admite una primitiva F sobre un intervalo I, entonces para todo real k, una primitiva de kf sobre el intervalo I es kF.
Si F y G son primitivas respectivas de dos funciones f y g, entonces una primitiva de f + g es F + G.
La linealidad se puede expresar como sigue:
La primitiva de una función impar es siempre par
En efecto, como se ve en la figura siguiente, las áreas antes y después de cero son opuestas, lo que implica que la integral entre -a y a es nula, lo que se escribe así: F(a) - F(-a) = 0, F siendo una primitiva de f, impar. Por lo tanto siempre tenemos F(-a) = F(a): F es par.

La primitiva F de una función f par es impar con tal de imponerse F(0) = 0
En efecto, según la figura, la áreas antes y después de cero son iguales, lo que se escribe con la siguiente igualdad de integrales:

Es decir F(0) - F(- a) = F(a) - F(0). Si F(0) = 0, F(- a) = - F(a): F es impar.
La primitiva de una función periódica es la suma de una función lineal y de una función periódica

Para probarlo, hay que constatar que el área bajo una curva de una función periódica, entre las abcisas x y x + T (T es el período) es constante es decir no depende de x. La figura siguiente muestra tres áreas iguales. Se puede mostrar utilizando la periodicidad y la relación de Chasles, o sencillamente ¡con unas tijeras! (cortando y superponiendo las áreas de color).En término de primitiva, significa que F(x + T) - F(x) es una constante, que se puede llamar A. Entonces la función G(x) = F(x) - Ax/T es periódica de período T. En efecto G(x + T) = F(x + T) - A(x + T)/T = F(x) + A - Ax/T - AT/T = F(x) - Ax/T = G(x). Por consiguiente F(x) = G(x) + Ax/T es la suma de G, periódica, y de Ax/T, lineal.

Y por último, una relación entre la integral de una función y la de su recíproca. Para simplificar, se impone f(0) = 0; a es un número cualquiera del dominio de f. Entonces tenemos la relación:

El área morada es la integral de f, el área amarilla es la de f -1, y la suma es el rectángulo cuyos costados miden a y f(a) (valores algebraicos).
Se pasa de la primera curva, la de f, a la segunda, la de f -1 aplicando la simetría axial alrededor de la diagonal y = x.
El interés de esta fórmula es permitir el cálculo de la integral de f -1 sin conocer una primitiva; de hecho, ni hace falta conocer la expresión de la recíproca.
Cálculo de primitivas
Integrales
Para encontrar una primitiva de una función dada, basta con descomponerla (escribirla bajo forma de una combinación lineal) en funciones elementales cuyas primitivas son conocidas o se pueden obtener leyendo al revés una tabla de derivadas, y luego aplicar la linealidad de la integral:
Aquí están las principales funciones primitivas:
Función : primitiva de
función : derivada de
0 \end{matrix} \,\!" type="#_x0000_t75" o:spid="_x0000_i1032">
Por ejemplo, busquemos una primitiva de x → x(2-3x). Como no se conocen primitivas de un producto, desarrollemos la expresión: x(2-3x)= 2x - 3x2. 2x es la derivada de x2, 3x2 es la de x3, por lo tanto 2x - 3x2 tiene como primitiva x2 - x3 + k. Si además se pide que la primitiva verifique una condición F(x0) = y0 (que recibe el nombre de condición inicial cuando se trata de un problema de física), entonces la constante k es unívocamente determinada. En el ejemplo, si se impone F(2) = 3, entonces forzosamente k = 7.
Métodos de integración
Tenemos varios métodos a nuestra disposición:
La linealidad de la integración nos permite descomponer integrales complicadas en otras más sencillas.
Integración por sustitución, a menudo combinada con identidades trigonométricas o el logaritmo neperiano.
Integración por partes para integrar productos de funciones.
El método de la regla de la cadena inversa, un caso especial de la integración por sustitución.
El método de fracciones parciales nos permite integrar todas las funciones racionales (fracciones de dos polinomios).
El algoritmo de Risch.
Integrales también pueden calcularse utilizando tablas de integrales.
haga clic

No hay comentarios:

Publicar un comentario